
Test Case Generators and Computational Results 
for the Maximum Clique Problem 

J O N A S  H A S S E L B E R G  
Royal Institute of Technology, Department of Computer Science, KTH, Stockholm, Sweden 

P A N O S  M. P A R D A L O S  and G E O R G E  V A I R A K T A R A K I S  
Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL 32611, 
U.S.A. 

(Accepted: 2 November 1992) 

Abstract. In the last years many algorithms have been proposed for solving the maximum clique 
problem. Most of these algorithms have been tested on randomly generated graphs. In this paper we 
present different test problem generators that arise from a variety of practical applications, as well as 
graphs with known maximum cliques. In addition, we provide computational experience with two 
exact algorithms using the generated test problems. 
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1. Introduction 

Let  G = (V, E)  be an undirected graph where V =  {v 1 , o 2 , . . .  , Un} is the set of 
vertices in G, and E C_ V x V is the set of edges in V. Throughout  the paper we 
denote  the size of a set V by IV[. The adjacency matrix of G is denoted by 

A c = (air)n• where air = 1 if (i, j )  E E, and air = 0 if (i, j ) ~ E .  The complement 

graph of G = ( V ,  E) is denoted by G = ( V , / ~ ) ,  where /~--" {(i, j)[i, j E V ,  i r  
and (i, ] ) ~ E } .  For a subset S C_ V we call G(S) = (S, E A (S x S)) the subgraph 
induced by S. 

"A graph G = (V, E)  is complete if and only if Vi, j E V, (i, j )  E E. A clique C 
is a subset of V such that the induced graph G(C) is complete. The maximum 
clique problem is to find a clique C of maximum cardinality in a graph G. A vertex 
cover S is a subset of V such that every edge (i, j )  ~ E is incident to at least one 
vertex in S. The minimum vertex cover problem is to find a vertex cover of 
minimum cardinality in the graph G. An independent set (stable set, vertex 
packing) is a subset of V, whose elements are pairwise non-adjacent. The 
maximum independent  set problem is to find an independent set of maximum 
cardinality. It is easy to see that S is a clique in a graph G = (V, E)  if and only if 
V -  S is a vertex cover in the complement graph G = (V,/~),  and if and only if S 
is an independent  set of G. Thus, the maximum clique problem, the vertex cover 
problem and the maximum independent set problem are equivalent. In addition, 
they are all N~-comple te ,  which means that unless ~ = N ~  there exists no 
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algorithm that can solve either problem in time polynomial to the size of the 
problem. 

For more details about the maximum clique problem refer to [1, 2, 6, 13, 23] 
and the recent survey [15] which presents results concerning algorithms, complexi- 
ty and applications. The survey also provides an up to date bibliography on the 
maximum clique problem. 

In many applications, the underline problem can be formulated as a maximum 
clique problem while in others a subproblem of the solution procedure consists of 
finding a maximum clique. This necessitates the development of fast exact and 
approximate algorithms for the problem. Most of the proposed exact and heuristic 
algorithms have been tested on randomly generated graphs. In this paper we 
present different test problem generators that arise from a variety of practical 
applications, as well as graphs with known maximum clique. 

The application areas considered in this paper are diverse. For example, we will 
present a class of graphs from which we can prove or disprove Keller's conjecture; 
a famous problem in geometry, a part of which is still open. Another example 
arises from coding theory where one wishes to find binary codes as large as 
possible that can correct a prespecified number of errors. The problem can be 
solved by solving the maximum clique problem in a corresponding graph. Also we 
discuss generation of random graphs with known maximum clique size. Further- 
more, we present algorithms that generate all of the graphs discussed. As the 
graph generators are the main purpose of this paper they are thoroughly 
described in the text and the pseudocode of every generator is provided. 

In the last section we briefly describe two different maximum clique algorithms, 
and present some computational results revealing some interesting differences 
between the "hardness" of the different test problems and the algorithms. 

2. Coding Theory Problems 

In this section we will describe how coding theory problems can be interpreted as 
maximum clique problems on graphs and we will present the graph generators 
that produce these graphs. 

In Coding Theory, one wishes to find a binary code as large as possible that can 
correct a certain number of errors for a given size of the binary words (vectors), 
see [5, 20]. In order to correct errors, the code must consist of binary words 
among which any two differ in a certain number of positions so that a misspelled 
word can be detected and corrected. A misspelled word is corrected by replacing 
it with the word from the code that differs the least from the misspelled one. 

The Hamming distance between the binary vectors u = ( u l l u 2 , . . . ,  u n )  and 
v = ( v  1 , v 2 . . . . .  On) is the number of indices i such that 1 ~< i ~< n and u i ~ v i. We 
denote the Hamming distance by d i s t ( u ,  v ) .  

It is well known that a binary code consisting of a set of binary vectors any two 
of which have Hamming distance greater or equal to d can correct [ ~ x  j errors 
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(see [11]). Thus, what a coding theorist would like to find is the maximum number  
of binary vectors of size n with Hamming distance d. We denote this number by 
A ( n ,  d).  

Another  problem arising from Coding Theory,  closely related to the one 
ment ioned above, is to find a weighted binary code, that is, to find the maximum 
number  of binary vectors of size n that have precisely w l 's  and the Hamming 
distance of any two of these vectors is d. This number is denoted by A(n ,  w, d). 

A binary code consisting of vectors of size n, weight w and distance d, can correct 
w -  ~- errors (see [ l l l ) .  

2.1. HAMMING GRAPHS 

We define the Hamming graph H(n,  d),  of size n and distance d, as the graph 
with vertex set the binary vectors of size n in which two vertices are adjacent if 
their Hamming distance is at least d. Then,  A(n ,  d) is the size of a maximum 
clique in H(n,  d). 

The graph H(n,  d) has 2 n vertices, 2 n-a Ei~d(~ ) edges and the degree of each 
vertex is n n ~i=d( i )" 

2.1.1. Generator o f  Hamming  Graphs 

To generate the Hamming graph corresponding to specified values of n, d, we 
would like to represent each binary vector by a decimal integer in such a way that 
every digit of the binary vector can be recovered easily from the decimal integer. 
The easiest way to represent a binary word by a decimal integer is by its decimal 
equivalence. Also, this representation allows for a quick recovery of any digit of 
the vector,  as we see next. Let  

(X)l o = (a,_l  . . . ai+laiai_l . . . ao) 2 (1) 

=(an_12" a + . . . + a i + 1 2 i + l + a i 2 i + a i _ 1 2 i - l + . . . + a 0 ) a  ~ 

such that x E Z + and ai ~ {0, 1}, 0 ~< i ~< n - 1, where (U)b denotes an integer u in 
base b. It is easy to see that 

a i =  ~7 m o d 2 .  

In the computer  code that generates Hamming graphs, the user enters the 
binary vector size, vsize, the Hamming distance, d, and the name of the file in 
which the user wants to save the graph, ouoqle (see the first three lines in Figure 
1). 

The graph generator  uses two integer variables, vertl  and vert2, that represent 
the binary vectors. Since the graph is undirected the adjacency matrix is symmet- 
ric, and vertl ,  vert2 are assigned every possible value so that 0 ~< vertl < vert2 <~ 

IV I - 1. This is done in the two nested loops in lines six and seven in Figure 1. To 
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P r o g r a m  Hamming Graph 

1 vsize ~ binary vector size 
2 d ~ Hamming distance 
3 out f i le ,-.- output file name 

4 n , - -2  ~i~e 

5 write(out  file) n 

6 f o r v e r t l = 0 t o n - 2 d o  
7 for Vert2 = vertl + 1 to n -  1 
8 dist ~- 0 

9 f o r p o s = 0 t o n - l d o  
/~rt2/ mod 2) then  10 if ( L ~ J  mod 2 r L 2,o'J 

11 dist ~ dist + 1 

12 endif  
13 endfor  

14 if (dist >_ d) then  

15 write(out  file) T R U E  
16 else 

17 write(out f i le) FALSE 
18 endif  

19 e n d f o r  

20 endfor  

Fig. 1. Generator of Hamming graphs. 

find whether  vertl  and vert2 are adjacent or not, we have to check in how many 
positions the vectors vertl  and vert2 differ by checking whether  the pos- th  digit of 

the two vectors,  pos  = O, 1 , . . . ,  vsize - l pos ,  is the same or not. This is done by 

testing whether  

vertl  - ~ 7 ~ ] m o d 2 = [  vert2 ] j mod 2 .  

If  true,  increment  the counter  dist. Once all components  are tested, then if 
dist >I d, vertl  and vert2 are connected in the graph and true is written to the 

output  file (this is done in lines 14 through 18). 
The  program uses vsize to calculate the number  of vertices in the graph, 

IVI = 2 vsize , and writes the result to the output  file so that the size of the graph is 
easily found by the program in which the graph will be input. Then,  the adjacency 
matrix of  the graph will be saved by writing true when two vertices are connected 
and false when they are not. The entries in the output file correspond to the upper  
half of the adjacency matrix. The first IVI - 1 entries in the output  file form the 
first row in the matrix, the next I V I -  2 entries form the second row, and so on. 
Hence ,  the output  file will contain an integer denoting the graph size, followed by 
jvl(fvl-1) 

2 true or false. 
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2.2. JOHNSON GRAPHS 

We define the Johnson graph, J(n, w, d),  with parameters n, w and d, as the 
graph with vertex set the binary vectors of size n and weight w, where two vertices 
are adjacent if their Hamming distance is at least d. Then,  similar to Hamming 
graph, the size of the weighted code, A(n ,  w, d) ,  equals the size of the maximum 

clique in J(n, w, d).  
~(w)E~'=r~ 1 (~ ' ) ( "~  edges and the The graph J(n, w, d)  has ( ~ )  vertices, 1 n w) 

degree of each vertex is E~'=r~ 1 (~ , ) ( ,~w) .  

2.2.1. Generator o f  Johnson Graphs 

Again, when constructing the graph, we would like to represent the nodes, 
labeled by the binary vectors, by decimal integers. In this case, it is not as easy as 
with the Hamming graph since the vectors that are in the vertex set are not all the 
binary vectors of size n. Thus, we find appropriate to represent each vector by a 
list of indices in which the positions of the components that equal to 1 are stored. 
Since we have to examine every pair of vectors in the vertex set to see whether 
they are adjacent or not in J(n, w, d),  the index lists must be such that every 
binary vector that corresponds to a vertex is represented. We do this by assigning 
a numerical order  to the lists, as follows. 

Let  u(k)=(Un,  U n _ I , . . . ,  Ul) where l~<k~<(~ ) ,  be a binary vector in the 

vector set of J(n, w, d)  represented by the index list index= (i2, i 2 , . . . ,  iw) 
where ij, 1 ~<] ~< w, is the index of the j-th 1 from the right of u (k). To update 

, 1), l ~ < k ~ < ( ~ ) _ l ,  find index into representing /,/(k+l) instead of /~(k) u(k) < u(k+ n 

the smallest j, 1 ~< j ~< w, such that ij+ 1 - ij 1> 2 and increment ij by 1. Then,  for all 
m, 1 ~< m < j, set i m = m. In other words, find the first uij = 1 from the right in u (k) 
which has a 0 to its left and move that 1 one step to the left, then move all the ls 
with index less than ij in u (k) as far to the right as possible. We illustrate these 

ideas with the following example: 
Let  

u (k) = (0, 1, O, 1, 1, 1, O, O) 

index = (3, 4, 5, 7 ) .  

Using our method,  we find that the third 1 from the right is the first to have a 0 to 
its left. We move that 1 one step to the left and we shuffle the less significant l 's  
to the right. This results to: 

u (k+l) = (0, 1, 1, 0, 0, 0, 1, 1) 

index = (1, 2, 6, 7 ) .  

which is the next binary word in numerical order that has w ones. 
The Johnson graph generator  is given in Figure 2. In the generator,  the vector 
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P r o g r a m  Johnson G r a p h  

1 vs i ze  ~-- binary  vector  size 

2 w <-- vector  weight 

3 d , -  H a m m i n g  dis tance 

4 o u t f i l e  +- ou tpu t  file n a m e  

5 n + -  ( v ~ z e )  

6 w r i t e ( o u t  f i l e )  n 

7 fo r  o n e = l t o t o + l d o  

indexl[one] r v s i ze  

8 indexl(w + 1) = vsize + 2 

index2(w + 1) = vsize + 2 

9 e n d f o r  

10 fo r  v e r t l  m 1 t o  n - 1 d o  

I I  moved  *- F A L S E  

12 fo r  one = 1 t o  to d o  

13 if  (~moved)  t h e n  

14 if (inde~l[one] < i ndex l [one  4r 1] - I )  t h e n  

15 indexl[one] ~.- indexl[one] + 1 

16 moved  ~-- T R U E  

17 e l se  

18 indezl[one] *- one 

19 e n d i f  

20 e n d i f  

21 inde~2[one] * -  indezl[one]  

22 e n d f o r  

23 fo r  ver~2 : v e r t l  -I" 1 to  n d o  

24 dist  4-- 0 

25 moved +-- F A L S E  

26 fo r  one = 1 to  w d o  

27 if (~moved)  t h e n  

28 i f  (index2[one] < inde~2[one q- 1] - 1) t h e n  

29 index2[one] (--- index2[one] + 1 

30 moved  .4--- T R U E  

31 d.~a 

32 index2[one] (-- one 

33 e n d i f  

34 e n d i f  

35 equal *-- F A L S E  

36 for  m = l  to  to d o  

37 if  (index2[one] = index l [m])  t h e n  

38 equal +-- T R U E  

39 e n d i f  

40 e n d f o r  

41 if (~equal)  t h e n  

42 dis t  ~-- dist  + 2 

43 e n d i f  

44 e n d f o r  

45 if (dis t  >_ d) t h e n  

46 w r i t e ( o u t  f i l e )  T R U E  

47 e l se  

48 w r i t e ( o u t  f i l e )  F A L S E  

49 e n d i f  

50 e n d f o r  

51 e n d f o r  

Fig. 2. G e n e r a t o r  of  J o h n s o n  graphs .  
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size, vs i ze  = n and weight w, as well as the Hamming distance, d, and output file, 
outf i le ,  are given as input. The graph size, (%ze), is calculated and written to the 
output  file so that the size of the graph can easily be determined by any other 
program, using the adjacency matrix of a graph as input. Again, during execution, 
we will write true and false to the output file, in the same manner as for Hamming 
graphs. 

Next, one of the two index lists, index1,  is initialized by setting the w + 1 first 
positions to vsize  (see lines 7-9). Note that here we use an index list of length 
w + 1 and not of length w as we did when describing the idea in the previous 
section. This is only because when the list is updated for the first time, after the 
initialization, the updating algorithm will find that no 1 in the corresponding 
binary vector has a 0 to its left and therefore will shift all the l 's  to the right, just 
where we want them in our starting list. Note also that index2 does not have to be 
initialized since index1 is copied to index2 after the updating (see line 21 in Figure 
2). 

With index1 initialized, we can start examining every pair of vectors to see if 
they are adjacent or not. Just like for the Hamming graph, this is done in two 
nested for-loops where the decimal integers ver t l  and vert2, representing the 
vertices, are assigned every possible value such that 1 ~< ver t l  < vert2 <~ n. The 
first thing that is done in each loop is the updating of the index lists. Index1 ,  

representing the vector corresponding to ver t l ,  is updated in the outer  loop while 
index2 is updated in the inner loop. They are both updated in the same way so we 
only describe the procedure of updating index1. To do this, we use a flag called 
m o v e d  which is initially set to false.  Then we look through the index list, using yet 
another for-loop, and examine every index i . . . .  one = 1, 2 , . . . ,  w to see whether 
the corresponding 1 has a 0 to its left or not. If it has not, we put the 1 back to its 
starting position by setting index l[one]  = one. Otherwise, if the one- th  1 has a 0 
to its left we increase index l[one]  by one and set m o v e d  to true because now the 
list is updated and we do not want anything more to be done while finishing the 
loop. We then assign the same values to index2.  Thus, when index2 is updated in 
the beginning of the inner loop, it is given the values corresponding to the vector 
following in numerical order the one represented by index1. In Figure 2, index1 is 
updated in lines 11 through 22 and index2 in lines 25 through 34. 

When both lists are updated we can check the adjacency condition. This is done 
within the updating loop of index2 in the following way: for every index one we 
check if index2[one] = index l [m] ,  m = 1, 2 , . . . ,  w (lines 36-40 in the figure). If 
not, we increase the counter dist by 2. It is increased by 2 because if there is a 1 in 
one of the vectors in a position where the other vector has a 0, then the latter has 
to have a position which has a 1 while the former has a 0. Hence, the Hamming 
distance is increased by 2 for every unequal value in the index lists (lines 41-43 in 
the figure). Finally, we check whether dist >i d, and if so, write true to the output 
file, otherwise fa lse  (lines 45-49). 



470 J O N A S  H A S S E L B E R G  E T  A L .  

3. Problems Arising From Keller's Conjecture 

A family of hypercubes with disjoint interiors whose union is the Euclidean space 
R ~ is a t i l ing. A lattice tiling is a tiling for which the centers of the cubes form a 
lattice. 

In the beginning of the century, Minkowski conjectured that in a lattice tiling of 
R ~ by translates of a unit hypercube, there exist two cubes that share ( n -  1)- 
dimensional face. About  fifty years later, Haj6s [8] proved Minkowski's con- 
jecture. 

At 1930, Keller suggested that Minkowski's conjecture holds even in the 
absence of the lattice assumptions. Ten years later Perron [16] proved the 
correctness of Keller's conjec ture  for n ~< 6. Since then, many papers have been 
devoted to prove or disprove this conjecture and recently, Lagarias and Shor [10] 
proved that Keller's conjecture fails for n >I 10. Thus, it is left to prove whether  
the conjecture holds for n = 7, 8, 9. 

3.1. T H E  K E L L E R  GRAPHS F n 

We define the graph F, as a graph with vertex set V n = {(dl ,  d 2 , . . .  , dn):  

d i E { 0 , 1 , 2 , 3 } ,  i = l , 2 , . . . , n }  where two vertices u = ( d  1 , d  2 . . . .  , d , )  and 
v = (d' l ,  d ; , . . . ,  d',) in V, are adjacent if and only if 

=li, 1 <~ i <~ n: d i - d '  i -= 2 mod 4 (2) 

and 

a j # i , l < ~ j < - n :  d i # d S .  (3) 

In [7], Corrfidi and Szab6 presented a graph theoretic equivalent of Keller's 
conjecture.  It is shown that, there is a counterexample to Keller's conjecture if 
and only if there exist a n E N + such that Fn has a clique of size 2 n. 

F has 4 n vertices, �89 n -  3 ~ -  n) edges and the degree of each node is 
4 n - 3" - n. F, is very dense and has at least 8nn! different maximum cliques. It 

can be shown (see [10]) that the maximum clique size of F, is less than or equal to 
2 n" 

3.1 .1 .  T h e  F n G e n e r a t o r  

To construct the graph In, we use the same method for calculating the vector  
components  as we did with the Hamming graph in Section 2.1.1 with the 
exception of interpreting the vertices as integers in base 4 instead of in base 2. 
Thus, if we have a vector u = (un_ 1 , u n _ 2 , . . . ,  Uo) such that u i E {0, 1, 2, 3}, 
0 ~< i ~< n - 1, and if we represent u by its corresponding decimal integer 

x = u n _ 1 4 " - I d  + u,_2 4n-2 + - . .  + ui4 i + --- + u 0 

then we can calculate any coefficient u i as we did for the Hamming graph by 
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Ix] ui = ~ m o d 4 , 0 < ~ i ~ n - 1 .  

An  algorithm to generate  F, is given in Figure 3. As usual, the vector  size, 
vsize ,  and the output  file, ou~ile,  is given as input by the user. Then,  the graph 
size n = 4 vsi~e is calculated and written to the output  file (see lines 1-4  in the 

figure). In the two for-loops (starting at lines 5 and 6) we let vert l  and vert2 

represent  all pairs of nodes. By using two flags, kongrt  and diff, we test the 

connectivity conditions (2) and (3) for each such pair of nodes. This is done by 
initializing kongr t  and di f f  to false.  Then,  for every position pos  in the vectors,  we 
calculate the difference sub,  between the pos- th  component  c o m p l  of node vert l  

and the pos - th  component  c o m p 2  of node vert2 (lines 10-12). Fur thermore ,  if sub 

equals 2, i.e. if 

c o m p l  - c o m p 2  ~ 2 mod 4 ,  

and kongr t  = false,  then pos  is the first position in the vectors such that the 

P r o g r a m  Keller Graph 
1 vsize *-- binary vector size 
2 out f i le *-- output file name 
3 n * - -4  n 

4 wri te (out  f i le)  n 

5 f o r v e r t l = 0 t o n - 2 d o  
6 for  vert2 = vert l  + 1 to n -  1 do 
7 kongrt *-- F A L S E  

8 d i f f  ,-- FALSE 
9 for pos = 1 to vsize - 1 d o  

10 compl *-- ~pr,~ mod 4 
11 comp2 ~ t  2 *-- ~ rood 4 
12 sub *-- Icompl - comp2] 

13 if (sub = 2 A -~kongrt) t hen  
14 kongrt .-- T R U E  
15 elsei f (sub ~ 0) then 
16 d i f f  .-- T R U E  
17 endi f  
18 endfor  

19 if  (kongrt A d i f  f )  then  
20 write(out  f i le)  T R U E  
21 else 

22 write(out  f i le)  FALSE 
23 endl f  
24 endfor  
25 endfor  

Fig. 3. Generator for Keller graphs. 
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congruence condition (2) is fulfilled and we set kongrt to true (lines 13-14). Then, 
if dif f  is still false, we test only the difference condition (3) and if found true, then 
set dif f  to true (lines 15-16). When both diff  and kongrt are true, vertl and vert2 
are adjacent in F n and we write true to the output file, otherwise, as usual, false 
(lines 19-23). Again, the output file consists of the graph size followed by the 
upper half of the adjacency matrix. 

4. Problems Arising from Fault Diagnosis 

A crucial problem in studying the reliability of large multiprocessor systems, is the 
problem known as system,level fault diagnosis. The task is to identify all faulty 
processors (units) in the system. The classical approach to fault diagnosis was 
originated over twenty years ago by Preparata et al. [17], leading to a fault 
diagnosis model known as the PMC model. 

In the PMC model each unit can test some other units and it is assumed that 
fault-tree units always give the correct results while faulty ones are unpredictable 
and can output any results. Furthermore, it is assumed that the number of faulty 
units never exceed some upper bound t. Upon completion of all tests, the results 
are gathered by a monitoring unit which computes the status of all units based on 
the gathered results. 

The assumption that a fault-free unit always detects faulty units may seem a 
little optimistic. Also, the upper bound assumption may restrict the model to 
unrealistic situations. Further, the PMC model is accurate only if the upper bound 
t does not exceed the number of neighbors of any unit. For large systems, 
however, the connectivity might be fairly low, making it quite probable that the 
number of faulty units exceed the number of neighbours for some units. 

Yet another assumption in the PMC model, the existence of a central monitor- 
ing unit, makes it less reliable. In order to overcome this problem, distributed 
fault-tolerance was introduced. The goal of this approach is to find a ay to let 
every fault-free unit to be able to determine the status of every other unit. 

The above observations have led to several different models one of which was 
introduced by Blough [4]. In his model, processors test each other and fault-free 
units always detect other fault-free processors correctly, while they detect faulty 
processors with a fixed probability less than 1. No assumption is made about how 
faulty units behave as testers. 

4.1. C-FAT RINGS 

In [3], Berman and Pelc study a realistic approach to fault diagnosis by simulta- 
neously relaxing all the three assumptions from the PMC model described above. 
Their model is based on a probabilistic model presented by Blough performed in 
a distributed fashion. Consequently, a processor can never by sure that the 
information it receives is correct. Berman and Pelc define a system design 
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represented by a class of graphs, G,. They show that the probability of correct 
diagnosis of fault processors for such systems, happens with probability at least 
1 -  n -1. The algorithm they propose is based on a model where a test by a 
fault-free unit on a faulty one does not detect a fault with probability q, while 
they assume that fault-free units never detect faults in each other. 

For  a given parameter  c, a c-fat ring is the graph G = (V, E )  defined as follows. 

Let  

_- [ 
c loglV----~ ] 

Ivl 

and let Wo, . . . ,  W;~_I be a partition of V such that 

cloglV ]~< Iw~l ~ 1 +  [cloglVt] for i = o ,  1 , . . . ,  k -  1.  (4) 

For  u E W ~ a n d v ~ V C j w e h a v e  (u ,v )  E E i f f u # v  and [ i - j l E { 0 , 1 ,  k - 1 } .  
A major  step in the algorithm proposed in [3] is to find the maximum clique of 

a c-fat ring. Therefore  we construct a c-fat ring generator and perform some 
computations to see how the maximum clique algorithms perform on such graphs. 

4 . I . 1 .  C - F a t  R i n g  G e n e r a t o r  

An algorithm that generates c-fat rings is given in Figure 4. It works in a manner  
similar to the other algorithms given earlier in this paper. At first the input IvI 
and c is given, that is, the graph size and the partition parameter.  Then the 
number  of partitions k = [ cl~gnJ is calculated (see line 5 in Figure 4). The two 
for-loops assign values to ver t l  and vert2 so that every two nodes are tested to see 

P rog ram C-fat ring 
1 c 4 - - e  

2 n ~-- number of vertices 
3 out file ~- output file name 
4 w r i t e ( o u t  f i l e )  n 

5 k ~  ~-T~g.J [ .  
6 f o r v e r t l = O t o n - 2 d o  
7 par~l ~- ver t l  mod k 
8 for vert2 = ver t l  + 1 to n -  1 do 
9 part2 ~-- vert2 mod k 

10 if (Ipartl  -- part2[ < 1 V [partl -- part2] = k - 1) t h e n  

11 w r i t e ( o u t  f i l e )  T R U E  
12 else 
13 w r i t e ( o u t  f i l e )  FALSE 
14 endi f  
15 endfor  
16 endfor  

Fig. 4. The c-fat ring generator. 
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whether  they are connected or not. Two nodes are connected if they are members  
of  the same or adjacent partitions. We represent  nodes of G by the integers 0, 

1 . . . .  , n - 1. For  convenience we let the i-th, 0 ~< i ~< k - 1, part  of the parti t ion 

to contain the vertices labeled i .  m, m = 1, 2 . . . . .  I w/I, where I W i I, the cardinality 
of parti t ion i which is given in equation 4. By construction, every other k-th node 

is found in the same partition. This gives us an easy way to calculate which 

parti t ion a node belongs to. Namely,  the partition compl to which vertl belongs 
to is calculated by 

compl = vertl mod k 

(see lines 7 and 9 in the figure). When compl and comp2 are calculated we test 
whether  the difference ]compl-  comp2[ is in {0, 1, k -  1}. In this case, true is 

writ ten to the output  file, otherwise false (see lines 10-13). As in the previous 
sections, the output  produced corresponds to the upper  half of the adjacency 
matrix. 

5. Graphs with Specified Clique Size and Density 

In [18, 19] Sanchis proposes an algorithm for generating instances of the vertex 

covering problem. Regarding the difficulty of the problems generated,  the reader  
is referred to [18]. The vertex covering is to find the smallest set of vertices V* of 

a graph G = (V, E)  such that every edge in G is incident on at least one vertex in 
V*. This problem is equivalent to solving the maximum clique problem for G. 

In this section we generate instances of the vertex covering problem according 
to Sanchis' algorithm and then convert them into instances of the maximum clique 

p rob lem by using the complement  graphs. Thus, if G = (V, E) is a graph with 
min imum vertex cover of size c generated by Sanchis' algorithm, then the 

complement  graph G = (V,/~) has maximum clique size cl(G) = IV[ - c (see also 

[151). 
To produce a graph G = (V, E)  with IvI = n, l e t  = m with minimum vertex 

cover  of size c, Sanchis proposes the following. Let  k = n - c. Choose a partition 
of the integer n into k parts n l , . . . ,  nk, where nl + n 2 + - . -  + nk = n such that 
irl~ r k ni  = Ei=l( 2 ) ~< m. Form k cliques with sizes n~ , . . . ,  n k. For each i, 1 ~< i ~< k, 
choose ni - 1 vertices f rom the i-th clique to be in the vertex cover. Add  m - m' 
additional edges to the graph in such way that each added edge is incident on at 
least one of the selected cover vertices. 

We can see the graph G = (V, E)  with Ivl = ~, IEI = m and a minimum vertex 
cover  of size c does not exist unless 

O<~c<~n-1 (5) 

and 

C 
r( b+2 1)+(k-r)(b2)-<m<~(2)+~ kc (6) 
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where k = n - c and n = k b  + r. This follows from the fact that a graph with n 

vertices and minimum vertex cover of size c can have at most (~) edges 
connecting cover vertices plus c(n  - c) = ck  edges connecting cover to noncover 
vertices. Fur thermore ,  a graph with n vertices and minimum vertex cover of size c 
must have at least r( b + 1 2 ) +  ( k -  r)( 2 b ) vertices (see [19]). Therefore,  the algo- 
r i thm works only on input n, m, c that fulfills the conditions (5) and (6) above. 

5.1. GENERATOR FOR GRAPHS WITH KNOWN CLIQUE 

In the algorithm presented here,  n is partitioned in k parts of nearly equal size 
and the additional edges are chosen randomly. 

The generator is given in Figure 5. As usual the input is given by the user, and 
it must fulfill conditions (5) and (6). A seed to the random-procedure is also 
given. In this algorithm we write to the output file in a somewhat different way 
than before.  To each true, fa l se  value that we write to the output file, we associate 
a pointer  i. Effectively, we treat the values true, fa lse  as records. This way, the 
algorithm will be able to update the value of a record from fa l se  to true when the 
corresponding edge is added. The graph size n is, as seen in lines 6 and 9 in the 
figure, written in 6 positions to the output file, so the graph can not have more 
than 999999 vertices, unless the source code is modified. 

To proceed on the algorithm, we represent every pair of nodes v e r t l ,  vert2 

(0  <~ ve r t l  < vert2 <- n - 1) in two for-loops, and we include ver t l  in the p a r t l  part 
of the partition, where par t1  = ver t l  mod k (lines 11 and 13), just as we did with 
the c-fat rings in Section 4.1.1. Within the two for-loops, we connect every pair of 
nodes that are in the same partition by writing true to the output  file if 
par t1  = par t2 ,  otherwise fa lse .  For every true that we write to the output file we 
increment  the counter  edges by one (lines 15-20). Now we have created a graph 
with k cliques each having size [ ~ ] or [ ~ ] + 1 and a cover of size c consisting of 
the nodes labeled k, k + 1 . . . .  , n -  1 where the total number  of edges equals 
edges.  Thus, if edges is less than m we have to connect m - edges additional edges 
to get a graph with the desired number  of edges. We do this in a while-loop in 
which we randomly assign ver t l  to a cover vertex and vert2 to any vertex (lines 
25-28).  The assignment is done in while-loop that ensures that ver t l  ~ vert2. We 
make use of a real-valued procedure random that takes as argument a seed and 
returns a random number  y E [0, 1]. 

Suppose we have two nodes ,  ver t l  and vert2,  that we would like to connect. To 
do this we must know the position in the output file corresponding to edge, ( v e r t l ,  

ver t2) .  Also, we need to know whether the value of this entry is already true. If 
ver t l  is less than vert2 (lines 29-31) we can calculate the corresponding position 
in the file in the following way. There  are 6 positions in which n is written, 
followed by a total of pairs  = n(" 21) entries representing edges, which results to a 
total of i = 6 + pairs  entries in the file. The rowres t  = (n - ~m)(n - ,,~rt~ 2 - -  ~} last entries 
correspond to edges (u, v) such that ver t l  < u ~< v ~< n - 1. The colrest  = n - vert2 
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P r o g r a m  Sanchis graph 

1 n ~-- number of vertices 

2 m ~ number of edges 

3 e ~-- cover size 

4 seed 4-- random number generator seed 

5 out  f i l e  ~- output file name 

6 k ~ - - n - c  

7 i ~ 6  

8 edges ~ 0 

9 w r i t e ( o u t  f i l e ,  rec=i) n 

10 f o r v e r t l = 0 t o n - 2 d o  

11 par t l  ~ v e r t l  mod k 

12 for  vert2  = v e r t l  + 1 to  n -  1 do 

13 part2 ~-- ver t2  mod k 

14 i~ - - - i+  l 

15 f f  ( par t l  = part2)  t h e n  

16 w r i t e ( o u t  f i l e ,  tee=i) T R U E  

17 edges ~ edges + 1 

18 else 

19 w r i t e ( o u t  f i l e ,  tee=i) FALSE 

20 e n d i f  

21 endfo r  

22 end fo r  

23 whi le  (edges < m)  do 

24 v e r t l  ,-- ver t2  

25 whi le  (vertl  = vert2) do 

26 vert  l *--- 1 + k + (n - k ) . r a n d o m ( s e e d )  

27 vert2 ~ 1 + n .  r a n d o m ( s e e d )  

28 e n d w h i l e  

29 i f  ( ve r t l  < vert2)  t h e n  

30 v e r t l  ~ ver t2  

31 e n d i f  

32 pairs  ~-- n ( . - l )  
2 

33 r o w r e s t  ~ ( . . . . .  tl)( . . . . .  t l - 1 )  
2 

34 eolrest *-- n -- vert2 

35 i *-- 6 + pairs  - rowres t  - colrest 

36 r e a d ( o u t  f i l e ,  tee=i) tmp 

37 i f  (-,trap) t h e n  

38 w r i t e ( o u t  f i l e ,  ree=i) T R U E  

39 edges ~-- edges + 1 

40 e n d i f  

41 e n d w h i l e  

Fig. 5. Generator for graphs with known Clique. 
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entries preceding the last rowrest entries correspond to edges (vertl, v) such that 
vert2< v. Therefore ,  i = 6 + p a i r s -  rowres t -  colrest is the position in the file 
representing the edge (vertl, vert2) (see lines 32-35 in the figure). If this entry is 
false we change it to true and increment edges by one, otherwise we start again 
from line 23. 

6. Computations 

In this section we present some computational experiments using the generated 
graphs, with two exact algorithms. These computations will help us evaluate the 
difficulty of the generated instances and the efficiency of the algorithms. The two 
algorithms tested are the CP-algorithm presented in [6], and the PR-algorithm 
presented in [13]. 

In [13] the authors present computational results for graphs of up to 1000 
vertices and 150000 edges while in [6] the authors present results for graphs of up 
to 3000 vertices and over one million edges. Those computations were made on 
an IBM 3090 computer  while our computations were performed on a Sun4 
computer .  On this machine we were able to solve problems, in a reasonable 
period of time, where the size of the graphs did not exceed 256 vertices. 

6.1. THE CP-ALGORITHM 

The  CP-algorithm presented in [6] is a simple and efficient algorithm that uses 
partial enumerat ion to find the maximum clique in an arbitrary graph. Computa- 
tions on randomly generated graphs show that it compares favorably with all 
existing exact algorithms for the maximum clique problem. Next, we give a brief 
description on the CP-algorithm. 

Consider the graph G = (V, E) .  If the graph is dense, the algorithm orders and 
relabels the vertices so that vl E V is the vertex of smallest degree in G, v 2 ~ V is 
the vertex of smallest degree in G - {Vl} and generally, v k E V is the vertex of 
smallest degree in G - {v 1 . . . .  , vk_l}, 1 <~ k ~< n - 2, where n = IVI. Empirical 
tests show that computation time is greatly reduced if the vertex set is ordered in 
the above way. When the nodes are ordered the algorithm searches through the 
branch and bound tree in a depth-first manner.  

The algorithm starts assigning to the root of the tree (at level 1), the vertex v 1. 
Then,  v~ is expanded by the vertices v2, v 3 , . . .  , v, .  Suppose we are at level d of 
the tree. Then there are d - 1 vertices in the current partial clique. Assume v is 
the vertex assigned at level d - 1 .  Then,  we expand v. Suppose V a = 

{Vdl , �9 �9 . , V d i  . . . .  , Vam } is the set of all vertices considered at depth d and that the 
vertices { v a l , . . .  , v 4 1} have already been considered. Then v is expanded by  
vdi. Then,  we proceed to level d + 1 by expanding vai by all vertices that are 
adjacent to vdl and are not included in the current partial clique. The algorithms 
continues in this fashion. 
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To eliminate branching, the algorithm uses the following branching rule: Let v~, 
be the vertex corresponding to level d. Then, vertices { v ~ l , . . . ,  vdi_l } have 
already been considered thus allowing for inclusion to the current clique, only 
vertices in {vd i .1 , . . . .  yam }. This means that the current clique cannot have size 
bigger than d + (m - 1). If this size is less than or equal to the current incumbent 
size, then it is clear that expansion of va, cannot result in a larger clique. In this 
case the algorithm backtracks to the previous level. If the algorithm is at depth 1 
and the inequality holds it terminates and the current clique is maximum. For 
more details and for the Fortran code see [6]. 

6.2. THE PR-ALGORITHM 

The PR-algorithm presented in [13] is a branch and bound algorithm that is based 
on a quadratic zero-one formulation of the maximum clique problem. This 
algorithm is proved to be efficient for dense graphs. 

Solving the maximum clique problem for a graph G = (V, E)  with n = IVI 
vertices, is equivalent to solving the following quadratic zero-one program: 

m i n f ( x ) = - ~ x i + 2  Z xixj, x@ {0, 1}" 
i = 1  (vi, vj)~E 

i>] 

or equivalently in symmetric form 

minf (x )=xTAx,  A = A ~ - I ,  x E { 0 , 1 } "  

where A~ is the adjacency matrix of G, and I is the n x n identity matrix. A 
solution x* to the above program defines a maximum clique C for G as follows: if 

* = 0 then v i ~ C with ]CI = - z  = - f (x*) .  * = 1 then v i E C and if x i x i 

To solve the problem stated above the algorithm uses a depth-first branch and 
bound technique by selecting a binary variable, xi, and fixing it to zero for one 
subproblem and to one for the other. To reduce the size of the search tree, the 
algorithm two different pruning rules. An upper bound rule and a forcing rule. 
The upper bound rule prunes if a calculated upper bound for the subproblem is 
less than the current incumbent objective value. The forcing rule prunes by 
generating only one branch for a given variable if it can be shown that the 
alternate value can only yield suboptimal solutions. 

The algorithm can use two different ways of determining the order with which 
vertices are considered for branching. The greedy approach and the non-greedy 
approach. The non-greedy approach branches on the vertex of smallest degree 
first, leading to a small search tree which takes less time to search through and 
hence, confirmation of optimality takes less time than the greedy approach. 

On the other hand, the greedy approach branches on the vertex of largest 
degree first, leading to a large search tree where the maximum clique will be 
found early in the depth-first search. Of course confirming optimality can not be 
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done until the whole tree is searched which means that the greedy approach is 
expected to take more time. For these reasons, the greedy approach is only used 
to heuristically approximate the size of the maximum clique while the actual 
branching is done by using the non-greedy approach (for details see [13]). 

6.3. COMPUTATIONAL RESULTS 

The computations were performed on a Sun4 computer With the two exact 
maximum clique algorithms implemented in Fortran 77. The test graphs were 
generated by the algorithms described in the previous sections. 

The sizes of the solved problems vary from 50 to 256 vertices. Our experience 
as well as the tables presented here indicate that the CP-algorithm is more 
effective for large problems while the PR-algorithm is faster for dense graphs. 
However, for graphs with size exceeding 256 vertices, no algorithm managed to 
produce answers in reasonable amount of time (a few hours). Also we observed 
that graphs with large maximum clique size are computationally harder. 

In Table I we present computational results when the two algorithms are tested 
on c-fat rings of different characteristics. In the leftmost column, the partition 
parameter c is given. Note that even though the problems are of moderate size, 
the CP-algorithm has some difficulties with dense graphs. 

In Table II we present the results from computations on Hamming graphs. In 

Table I. Computational results on c-fat rings 

c Number of Number of Graph Size of Avg CPU-time (sec) 
vertices edges density max clique 

% CP-alg PR-alg 

1 100 669 14 10 0.056 0.030 
2 100 1450 29 20 0.092 0.092 
3 100 2094 42 30 0.420 0.106 
4 100 2950 60 40 8.102 3.096 
5 100 3700 75 50 104.438 3,166 

Table II. Computational results on Hamming graphs 

n dist Number of Number of Graph 
vertices edges density 

Size of Avg CPU-time (sec) 

max clique CP-alg PR-alg 

6 2 64 1824 90 
6 3 64 1344 67 
6 4 64 704 35 
6 5 64 224 11 
7 3 128 6336 78 
7 4 128 4096 50 
7 5 128 1856 23 
8 2 256 31616 97 
8 4 256 20864 64 

32 13.170 6.872 
8 0.490 4.694 
4 0.080 0.338 
2 0.060 0.0116 

16 307.388 2576.500 
8 1.532 21.640 
2 0.176 1.078 

79 a >105 >105 
16 1029.970 >105 

a This is a lower bound, calculated at termination. 
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the first column the size n of the binary vector is given and in the second the 
Hamming distance is given. Again we note that the PR-algorithm is more efficient 
on dense graphs of moderate size while the CP-algorithm can solve larger 
problems. 

In Table III the values of binary vector size, vector weight and Hamming 
distance for the Johnson graphs are given in the first three columns. Notable here 
is that the CP-algorithm is the fastest even when the density is rather high. 

The results on Keller graphs F, are presented in Table IV. Here n denotes the 
vector size. Since the size of these graphs is 4" for given n, we are not able to 
solve problems with n > 4. 

In Table V we present the results we obtained by testing the two algorithms on 
the complement of graphs generated for the vertex cover problem. Both algo- 
rithms are efficient when the density is low. However, both algorithms have 
difficulties for dense graphs. Recall that the graphs are generated in such a way 
that the first node is always in the maximum clique. Thus, one might suspect that 
the labeling of the nodes of these graphs makes them easy to test. For this reason, 
for each test graph, we repeated the experiment with randomly relabeled nodes. 
It turns out that there is no notable difference in CPU time. 

Table III. Computational results on Johnson graphs 

n w dist Number of Number of Graph Size of AVG CPU-time (sec) 
vertices edges density max clique 

CP-alg PR-alg 

8 3 4 56 1120 73 8 0.808 7.190 
8 3 6 56 280 18 2 0.050 0.022 
8 4 4 70 1855 77 14 2.334 14.724 
8 4 6 70 595 25 2 0.070 0.228 
9 3 4 84 2730 78 12 26.694 229.760 
9 3 6 84 840 24 3 0.090 0.366 

10 3 6 120 2100 29 3 0.214 3.064 
11 2 4 55 990 67 5 0.360 5.188 
12 2 4 66 1485 69 6 1.068 18.067 
13 2 4 78 2145 71 6 4.500 101.410 
14 2 4 91 3003 73 7 15.538 356.480 
15 2 4 105 4095 75 7 74.844 2145.660 
16 2 4 120 5460 76 8 278.162 7880.820 

Table IV. Computational results on Sanchis graphs 

n Numberof Numberof Graph Size of Avg CPU-fime ~ec) 

vertices edges density max clique CP-alg PR-alg 

3 64 1088 54 5 0.200 1.952 
4 256 21888 67 12 6302.600 >105 
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Table V. Computational results on Sanchis graphs 

Number of Number of Graph Size of Avg CPU-time (sec) 
vertices edges density max-clique CP-alg PR-alg 

50 245 20 5 0.048 0.870 
50 613 50 5 0.096 0.590 
50 980 80 5 1.396 26.952 
90 597 15 5 0.088 0.320 
90 2003 50 5 0.646 12.592 
90 3204 80 5 30.160 841.360 
90 3204 80 5 30.220" 852.300 a 

130 1677 20 10 0.200 0.988 
130 4193 50 10 1.299 20.440 
130 4193 50 10 1.725 a 18.780" 
130 6708 80 10 >3600 >3600 

a Calculated on randomly relabeled graphs 

7. Concluding Remarks 

In this paper we presented a variety of test cases for the maximum clique 
problem. The generated graphs can be used to test and compare proposed 
algorithms for the maximum clique problem. Also, we discussed the generation of 
graphs with known maximum clique size (see also [12]). All Fortran codes of the 
test generators are available by e-mail from parda los@math .u f l . edu  or 

v air akta @ is e. ufl. e du. 
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